Other senses: taste, smell, touch

Senses – general information

receive specific kind of stimuli (information):

- from the external environment by exteroceptors
 - smell, taste, vision, hearing, touch and pain
- from the internal environment by interoceptors
 - proprioception, pain, internal environment
- on the border of both balance
 - perception of body movement is based on interoceptors and on the use of inertial forces in the inner ear

general classification:

- **primary** (receptor is directly a neuron)
- secondary (epithelial receptor is an epithelial cell underlain with a dendrite)

neuroepithelial

Primary receptors

- smell
 - receptor: oflactory cells of olfactory epithelium of nasal cavity
- vision
 - receptor: rods and cones of retina of eyeball
- <u>neuronal</u>
- touch, pain(nociception), proprioception
 - receptors: free nerve endings of skin, joints, fasciae, organs OR encapsulated nerve endings of skin (tactile corpuscles), tendons (Golgi tendon organs) and muscles (muscle spindles)
- internal environment free and encapsulated nerve endings, nerve cells bodies
 - chemoreceptors
 - monitoring: blood acidity (pH), oxygenation level (partial pressure of CO₂ and O₂), glucose blood level, hormones blood levels, ions urine level
 - osmoreceptors
 - monitoring: blood osmolality
 - baroreceptors
 - monitoring: blood pressure

Secondary receptors

- hearing
 - hair cells of membranous cochlea of internal ear
- balance
 - hair cells of membranous labyrinth of internal ear
- taste
 - gustatory cells of gustatory buds of papillae on tongue and palate

Taste (Gustus)

Greek: geusis

Organum gustatorium Gustatory organ

- secondary receptors
- receptor cell has a synapse with peripheral process of 1-order neuron of gustatory pathway
- in mucosa of 8-12 papillae vallatae of tongue
 - arranged in a shape of letter V just in front of sulcus terminalis linguae
- also in mucosa of papillae fungiformes et foliatae of tongue
- also in mucosa of soft palate, posterior wall of pharynx, plicae glossoepiglotticae and epiglottis
- also free nerve endings can function as gustatory receptors

Organum gustatorium Gustatory organ

- vallate papilla (papilla vallata)
 - 1-2 mm wide
 - vallum papillae outer wall (rampart)
 - sulcus papillae circular groove around papilla, its wall contain gustatory buds
 - salivary glands open into the floor of sulcus papillae
- **gustatory bud** (gemma gustatoria, caliculus gustatorius)
 - 50-150 cells (70 x 40 µm)
 - 5000 buds on tongue (250 in papilla vallata)
- gustatory pore (*porus gustatorius*)
 superficial pit is the access into the bud

Stratified squamous epithelium non-keratinized

- Trench

Taste buds

Nerve fibers

Serous glands of von Ebner

Gemma gustatoria Gustatory bud

- development: Week 11–13
 - cells come from chorda tympani, n. IX, n. X
 - reaction by accelerated swallowing and facial movements (Week 26)
- 4 cell types together 100–150 cells
 - gustatory cells (*epiteliocytus gustatorius*)
 - microvilli
 - chemoreceptors, secondary receptors (type I)
 - supporting cells (*epiteliocytus sustenans*)
 - basal cells (*epiteliocytus basalis*)

Accessory stucture of gustatory organ

- <u>glandulae gustatoriae von Ebneri</u> (pars profunda glandulae lingualis posterior)
 - fine serous salivary glands adjacent to papillae vallatae
 - compound branched tubulous to tuboalveolar gland
 - product contains enzymes starting introductory cleavage of nutrients (lingual lipase, acid phosphatase, nonspecific esterase, salivary amylase)
 - cells contain secretory granules with peroxidase \rightarrow reduced number of bacteria around papillae \rightarrow no infection
 - ducts open into floor of grooves round papillae vallatae
 - saliva dissolves substances perceived by taste and rinsed out the gustatory buds

Taste = Gustus

- basic kinds of taste
 - sweet, salt, bitter, acid, umami (natrium glutamate)
 - others (fat)
- each gustatory bud perceives all kinds of taste
 - located on papillae vallatae, fungiformes et foliatae

Projection → Ascending → Sensory GUSTATORY PATHWAY

3-neuronal pathway, decussated and non-decusated 1.N: via cranial nerves

- soft palate → nn. palatini minores → ggl. pterygopalatinum (not synapsed!) → n. petrosus major → ggl. geniculi → n. intermedius → n. VII → nuclei tractus solitarii
- anterior 2/3 of tongue (= dorsum linguae) → n. lingualis → chorda tympani → n. intermedius → n.
 VII → nuclei tractus solitarii
- posterior 2/3 of tongue (= radix linguae) + papillae vallatae → n. IX → ganglion inf. et sup. n. IX → nuclei tractus solitarii
- epiglottis, aditus laryngis → n. X → ganglion inf. et sup. n. X. → nuclei tractus solitarii

$\begin{array}{l} \mbox{Projection} \rightarrow \mbox{Ascending} \rightarrow \mbox{Sensory} \\ \mbox{GUSTATORY} \ \mbox{PATHWAY} \end{array}$

2.N: nuclei tractus solitarii → tractus tegmentalis centralis (along tr. trigeminothalamicus posterior) → ncl. VPM thalami

collaterals to motor nuclei of cranial nerves and to RF

- 3.N: thalamus → cerebral cortey lobus parietalis, gyrus postcentralis (area 43) and anterior part of insula collaterals to gyrus parahippocampalis
- collaterals to hypothalams, corpus amygdaloideum and cerebral cortex via ncll. parabrachiales bypasses thalamus antigenic properties of nutrition (immunity) + taste aversion

Smell / Olfaction (Olfactus)

Greek: osmé = odour

Olfactory organ Organum oflactorium

- olfactory mucosa in nasal cavity
 - ceiling, concha superior and lateral walls at level of concha nasalis superior
- 3-5 cm² in one half of nasal cavity
- smell = olfactus
- perceiving of chemical substances (odorants) dissolved in air or water, usually in very low concentrations = smell/scent/odour
- primary receptor
- olfactory epithelium
- olfactory pathway (n.l)

Nerves of Nasal Cavity Distribution of Olfactory Mucosa

Olfatory epithelium = *Epithelium olfactorium*

specialized pseudostratified columnar epithelium (100 µm high) with modified (immobile) cilia

- **olfacotry cells**(*epitheliocyti neurosensorii olfactorii*)
 - bipolar neurons, life expectancy 30-60 days
 - highly polarized cells, flask-shaped
 - apical end (dendrite) with button-like termination (*bulbus dendriticus*) contains 10-20 modified (immobile) cilia (and low border of microvilli)
 - cilia feature odorant receptors on their surface
 - nuclei located in the middle of epithelial height
 - basal end (axon) surrounded by cytoplasmic processes of glial cells (0,2 µm thick ranks it among the thinnest nerve fibers)
 - relatively quickly multiplying neurons neurons (major exception in neural tissue)

Olfatory epithelium = *Epithelium olfactorium*

- **basal cells** (*epithelocyti basales*)
 - mitotically active stem cells/neurons with nuclei located basal at lamina basalis epithelii
- **supporting cells** (*epithelocyti sustenantes*)
 - mirror shape to olfactory cells
 - apically located nucleus
 - tight junctions with olfactory cells
 - long microvilli on apical surface
 - basally located lipofuscin granules (number increasing with age), long-living cells (life expactancy 1 year)
- immature olfactory cells = globose cells
 - intermediate stage between basal and olfactory cells
 - their apical end do not the epithelial surface yet

Olfatory epithelium – other parts

fila olfactoria

- bundles of unmyelinated axons of olfactory cells
- pass via lamina cribrosa ossis ethmoidalis into cranial cavity to bulbus olfactorius
- olfactory glands (glandulae olfactoriae Bowmani)
 - simple branched tuboalveolar
 - serous secretion \rightarrow concentrates and dissolves odorants and then rinsed them away
 - secretion contains odorant-binding protein (OBP) with high affinity to large scale of odorant molecules, and also lysosyme, lactoferrin and immunoglobulin A
- olfactroia glia (glia olfactoria)
 - fine cells encompassing unmyelinated olfactory fibers in v lamina propria mucosae
 - derived from olfactory placode (from superficial ectoderm)

Bulbus olfactorius

- 2-order-neuron of olfactory pathway
- olfactory glomerules (glomeruli olfactorii)
 - axons of olfactory cells form synapses with dendrite of mitral cells (and basket and periglomerular cells)
- axons of mitral cells (*neura mitralia*) pass as tractus olfactorius to olfactory cortex (*paleocortex*) and other olfactory centers

Projection \rightarrow Ascending \rightarrow Sensory OLFACTORY PATHWAY

2-neuronal pathway

- 1.N: neuroepithelial cells in pars olfactoria cavitatis nasi \rightarrow fila olfactoria \rightarrow lamina cribrosa ossis ethmoidalis \rightarrow fossa cranii anterior \rightarrow bulbus olfactorius
- 2.N: mitral cells in bulbus olactorius \rightarrow tractus olfactorius \rightarrow trigonum olfactorium \rightarrow stria olfactoria med. et lat. \rightarrow **limbic system**
 - cortex piriformis anterior pole of lobus temporalis
 - uncus and anterior end of gyrus parahippocampalis
 - area entorhinalis (area 28)
 - cortical part of corpus amygdaloideum
- hypothalamus, corpora mammillaria
- highest olfactory center orbitofrontal cortex (11,12,47)

Touch (Tactus)

Touch = Tactus

touch (tactus) involves discrimination, pressure, tension, vibrations

pain (dolor) = nociception

- somatosensory endings in skin
 - generally all receptors perceive all kinds of modalities (based on the stimulus intensity)
- somatosensory endings in joint capsules, muscles, tendons, fasciae
- viscerosensory endings in organs ("inner touch")
 Head's zones
- areae nervinae x areae radiculares
- sensory components of cranial and spinal nerves
- ascending projection pathways

Skin receptors

- free nerve endings
- nerve endings connected with epidermal structures
 - within dermis, connected with structures derived from epidermis
 - nerve endings connected with hair follicle lanceolate nerve corpuscles
 - nerve endings connected with epidermal cell –
 Merkel's discs
- encapsulated nerve endings (corpuscles)
 - group of corpuscles of different size, shape and location
 - always contain a dendrite (peripheral process) ensheated with unexcitable cells
 - Vater-Pacini's, Meissner's, Ruffini's corpuscles, Golgi's tendon organs, muscle spindles

Free nerve ending Terminatio neuralis libera

- sensory nerve ending, branched into plexuses
- epidermis (stratum basale et spinosum), cornea, hair follicle, around sweat glands
- all connective tissues (dermis, fasciae, organ capsules, ligaments, tendons, vessel adventitia, meninges, joint capsules, periosteum, perichondrium, osteons, parietal peritoneum, endomysium of all kinds of muscles)
- epithelia (skin, cornea, conjunctiva, mucosa of cheeks, respiratory and digestive systems and their glands) and dentine
- acting as termoreceptors, mechanoreceptors, unimodal and polymodal nociceptors

Merkel's discs Meniscus tactilis / dendriticus

- flattened epithelial cells (*epitheliocytus tactilis*; Merkel's cells)
 - in deeper layers of epidermis form functional connections with branching of afferent nerve – A-beta fibers (*complexus epithelliales tactus*)
- in hairy skin: groups of corpuscles linked to one nerve fiber
- in bald skin: ratio of discs and fibers in equal
- very sensitive to perpedicular movements of skin and hair deflection
Lanceolate corpuscle Corpusculum nervosum lanceolatum

- linked to hair follicle
- nerve fibers approaches right below the sebaceous gland
- then it loses its myelin sheath and branches up to 4 lanceolate endings
- rapidly adapting receptor
- sensitive to hair deflection

Meissner's (Wagner-M.) corpuscle Corpusculum ovoideum / tactile

- modified Schwann's cell layered across the corpuscle encompasses a central nerve fibers
- capsula fibrosa encloses the corpuscle and transmits forces from the surroundings
- located in stratum papillare dermis within papillae right below the epidermis
- occurrence: over the whole body, densest on fingertips, less on palms, soles, preputium, lips and in oral cavity
- size: 50 µm x 100 µm

Meissner's Corpuscle

Ruffini's corpuscle Corpusculum sensorium fusiforme

- cylindrical encapsulated corpuscles (several lamellae), similar structure to perineurium
- branched nerve fibers intermingle with collagen fibers inside (transmission of mechanical forces from the surroundings to the collagen and then to nerve fibers) → large receptive field
- located in stratum reticulare (deep in dermis at the transition to hypodermis) and in hypodermis
- occurrence: over the whole body, also in gingiva, glans, joint capsule and tendon insertions
- size: 0,5 mm x 2 mm

Vater-Paccini's corpuscle Corpusculum lamellosum

- most complex and largest encapsulated corpuscle
- up to 2.5 mm long, large receptive field
- central myelinated nerve fibers, enclosed by 30 lamellae of Schwann's cells
- capsula fibrosa formed by 60 lamellae of perineural cells (capsula perineuralis / bulbus externus)
- onion appearance on transverse section (based on lamellae of Schwann's and perineural cells)
- fluid between lamellae provides incompressibility and rapid transmission of pressure and vibration to dendritic zone of nerve fiber
- located deep in dermis (at border of dermis and hypodermis) and in hypodermis
- occurrence: skin (on palms, soles, fingers, toes, external genitals, arms, neck, nipples), periosteum, interosseous membranes, joint capsule, mesenterium of a cat ⁽²⁾
- rapidly adapting receptors, sensitive to vibration with higher frequency

Other tactile corpuscles for lovers of histology

Golgi-Mazzoni's corpuscle

- in hypodermis of fingertips
- thinner capsule and thicker nucleus than VP's corpuscle

Krause's corpuscle ("end-bulb corpuscle")

- in dermis (stratum papillare), conjunctiva, lips and tongue, epinerium of nerve trunks
- group in 2-6 = Dogiel's genital corpuscles (penis, clitoris)
- joint capsule (hand)
- cylindrical or oval encapsulated
- 50 μm x 150 μm
- Herbst's corpuscle tongue of a duck ©
- Grandry's corpuscle beak and tongue of birds

Muscle spindle Fusus neuromuscularis

- striated muscles
 - few in extraocular muscles, no in tongue muscles
- length: 0,8–5 mm
- capsule (*capsula*) fusiforme fibrous cover
 - *lamina externa* flat fibroblasts and collagen fibers (corresponds to perineurium)
 - lamina interna fie tubules around individual fibers
 - between a gelatinous fluid with glycosaminoglycanes
- intrafusal muscle fibers (myofibrae infrafusales)
 - differ from usual (extrafusal) muscle fibers by significantly shorter length and thinner zone of myofibrils around then nucleus

Muscle spindle – nerve endings

- anulospiral (primary) ending (*terminatio neuralis* anulospiralis)
 - spirals around nuclear area
 - rapidly adapting endings of sensory nerves
- flower spray (secondary) ending (*terminatio neuralis racemosa*)
 - branched with beaded ends
 - slowly adapting endings of sensory nerves
- neuromuscular plate
 - motor nerves endings (gama-motoneurons nd collaterals of alfa-motoneurons)

Muscle spindle – function

- provides information on the tension of extrafusal fibers at rest and during contraction or relaxation
- perceives isometric contractions (tension changes without stretching)
- the sensitivity is controlled by gammamotoneurons, which select the pretension of intrafusal fibers
- it is possible to set the sensitivity with which the muscle spindles function as a centripetal component of motor reflexes and thus affect the muscle tone
- monitors muscle conditions and sends this information to the CNS to compare between intended and actual movements

Muscle spindle Fusus neuromuscularis

Arteriole Capsule Intrafusal fibers

Extrafusal fibers

Tendon (Golgi's) organ Organum sensorium tendinis

- small bundles of tendon fascicles (*fasciculi intrafusales*) covered with a thin capsule
- over 50 tendon organs at each musculotendinous junction
- 1 tendon organ is in relation to a group of up to 20 muscle fibers, inserted a tendon bundle enclosing the tendon organ
- size: 500 x 100 µm
- slow adaptation
- provides proprioceptive information on muscle and tendon tension, thereby supplementing the proprioception of muscles and joint capsule

Projection \rightarrow Ascending \rightarrow Sensory \rightarrow Direct: TRACTUS SPINOBULBOTHALAMOCORTICALIS

- = *lemniscal system* (lemniscus medialis)
- = posterior/dorsal column-medial lemniscus pathway
- 3-neuronal pathway, decussated in medulla oblongata
- fine touch, vibrations, deep pressure, tension, proprioception from joints, tendons and muscles
- disorder: sensory ataxia (sclerosis multiplex, tabes dorsalis) – tabetic dissociation of sensitivity

Projection \rightarrow Ascending \rightarrow Sensory \rightarrow Direct \rightarrow Anterolateral system: **TRACTUS SPINOTHALAMICUS**

- part of *anterolateral system* (neospinothalamic tract)
- 3-neuronal pathway, decussated in spinal cord one (segment above entering the spinal cord)
- fast (acute pain), heat and cold (lat.) and crude touch (ant.)
- as lemniscus spinalis within brainstem
- from Rexed's zone I,V,VII,VIII
- disorder: syringomyelia syringomyelic dissociation of sensitivity
- stimulation / chordotomy in severe pain

Projection \rightarrow Ascending \rightarrow Sensory \rightarrow Direct \rightarrow Anterolateral system: SOMATOSENSORY PATHWAY OF CRANIAL NERVES

- analogous to both previous pathways
- fine touch + proprioception (tr. trigeminothalamicus post.), crude touch and pain (tr.t-th ant.) from head
- n. V, IX, X
- lemniscus trigeminalis (lateral to lemniscus medialis et spinalis)

Baroreceptors

- usually branched, knobby, twisted and intertwined myelinated nerve endings of n. IX + n. X.
- in heart located subendocardially and are nmyelinated
- high-pressure baroreceptors
 - at beginning of a. carotis interna (sinus caroticum)
 - at origin of a. subclavia (glomus subclavium)
 - in arcus aortae (glomera supracardiaca)
 - in the wall of left ventricle
- low-pressure baroreceptors
 - in the wall of vv. cavae and vv. pulmonales at their ends into atria
 - in the wall of heart atria
 - in the wall and at bifurcation of truncus pulmonalis (glomus supracardiacum)

Sinus caroticus

- = widened origin of a. carotis interna
- thinned tunica media
- thickened tunica adventitia
- nerve endings of n. IX (ramus sinus carotici)
- baroreceptor
 - arterial blood pressure
 - receptor for one of principal reflexes of blood pressure regulation

Chemoreceptors

peripheral

- glomus caroticum
- <u>glomus subclavium</u> + <u>glomera supracardiaca</u> (aortica) = aortal bodies
 - in arteries of 4th and 6th aortic arch
 - can serve as baroreceptors as well (similar to sinus caroticus)
- macula densa of distal tubule of nephron
 - level of ions in urine

central

area postrema

- circumventricular organ
- sensitive to various toxins brought by blood
- sensitive to PH changes of cerebrospinal fluid by means of modified ependym cells
- <u>chemoreception zones</u> for detecting various substances
 - level of glucose and fat (center of hunger and satiety in hypothalamus)
 - level of hormones in hypothalamus and other areas
 - estrogenes, gestagenes, thyroid gland hormones, mineralocorticoids and glucocorticoids) feedback regulation
 - » effect of hormonal anticonception

Glomus caroticum = Carotid body

- arterial chemoreceptor
- at bifurcatio carotidis
- oval, red-brown corpuscle
- with or at tunica adventitia (6 x 3 cm)
- viscerosensory fibers of n. IX (n. sinus carotici)
- visceromotor fibers of n. X and truncus sympathicus)
- stimulated by hypoxia mainly (low partial pressure of oxygen), less by hyperkapnia and lowered pH
- response: reflex higher breathing frequency and volume (caused by stimulation of breathing centers of RF in brainstem)
- structurally belongs to sympathetic paraganglia
- develops from ectomesenchyme of the 3rd pharyngeal arch (derived from neural crest cells)

Glomus caroticum

Glomus caroticum – structure

- fibrous capsule (capsula fibrosa)
 - septa
 - lobuli
- glomus cells (paragangliocyti, glomocyti)
 - function as dopaminergic interneurons
- supporting cells (*epitheliocyti sustenantes*)
- ganglionic cells
- fenestrated capillaries
- unmyelinated nerve fibers are the actual chemoreceptors

Other receptors

osmoreceptors

- chemoreception zones for osmolality of cerebrospinal fluid
- organum vasculosum laminae terminalis + organum subfornicale
 - for level of angiotensin II to induce a feeling of thirst and secretion of ADH
- osmolality of blood
 - center of thirst and "non-thirst" in hypothalamus and secretion of ADH

thermoreceptors

hypothalamus – center of cold and heat

Case report

- woman, 22 years
- 4 year history
- intermittent pain in cold, foreign body feeling
- palpable resitance on the neck
- ultrasound
- CT + angiography

Bilateral tumour of glomus caroticum

Pain (Dolor)

Pain – definition

- " An unpleasant sensory and emotional experience associated with real or potential tissue damage or described by terms for such damage. Pain is always subjective."
- independent entity = specific nociception system
- relationship <u>"impulse intensity = perception</u> intensity" does not always apply

PAIN

Nociceptors = Nocisensors

- do not adapt
- skin, mucosa of internal organs, striated muscles, joint capsules, periosteum, adventitia of small vessels, lymph vessels,
- CNS (cornu posterius medullae spinalis, medulla oblongata, hypothalamus, thalamus)
- not within cerebral cortex

3 types of nociceptors

- free nerve endings
 - thickened ends (boutons terminaux) with receptors
 - only react under very intense painful stimulation (stone movement, overeating) = <u>silent nociceptors</u>
- polymodal nociceptors
 - only in skin
 - react to temperature below 10°C and above 45°C
- high-level mechanoreceptors
 - tension, pressure, pain
 - Vater-Paccini's corpuscles
 - stroking with hand x kicking with foot

GYRUS SULCUS PRECENTRALIS PREFRONTÁLNÍ CENTRALIS MOZKOVÁ KŮRA ROLANDI GYRUS POSTCENTRALIS MOZKOVÁ KŮRA GYRUS CINGULI AMYGDALA CM THALAMUS VPL nF VPL+VPM-VB VPM HYPOTHALAMUS FORMATIO PODKOROVÉ STRUKTURY RETICULARIS (VAROLÜV MOST, PRODLOUŽENÁ MÍCHA) TRACTUS SPINORETICULO-NC. THALAMICUS PARABRACHIALIS TRACTUS TRACTUS SPINOTHALAMICUS TRACTUS SPINOPARA-VENTROLATERALIS SPINOPARA-BRACHIALIS BRACHIALIS HYPOTHALAMICUS AMYGDALARIS PÁTEŘNÍ MÍCHA

Scheme of transmission of painful stimuli from receptor to **CNS**

Pain pathways – ascending

- anterolateral system
 - tr. spinothalamicus ant. + lat. (neospinothalamic tract) – acute/fast pain
 - tr. spinoreticulothalamicus
 (paleospinothalamic tract) chronic/slow pain
 - tr. spinoparabrachialis (tr. spinomesencephalicus) affective-emotional component of pain
- (tractus spinobulbothalamicus)
- (tractus spinocervicalis)
- (tractus spinotectalis)
- ((tractus spinothalamicus secundarius))

Acute/fast/somatic pain

- weakly myelinated fibers Aδ (7-14 m/s)
 - somatic (lateral) afferentation
- \rightarrow nociceptive-specific neurons of Rexedo's lamina I,II
- → decussation at spinal cord level (commissura alba anterior)
- \rightarrow tractus spinothalamicus ant. + lat. (*glutamate*)
- \rightarrow ncll. ventrobasales thalami (ncl. VPL + VPM)
- → somatosensory cortex (area 3,1,2) gyrus postcentralis

Visceral/slow/chronic pain

- unmyelinated fibers C (0,5-3 m/s)
 visceral (medial) afferentation
- multireceptive neurons in ncl. proprius columnae post. = Rexed's lamina III-V (VIII,X)
- \rightarrow tractus spinoreticulothalamicus \rightarrow RF \rightarrow ncll. intralaminares thalami (ncl. centralis medialis, centralis lateralis, parafascicularis)
- → prefrontal cortex (area 6,9) + gyrus cinguli, insula – pain expectation

Affective-emotional component of pain

tractus spinoparabrachialis

- \rightarrow ncll. parabrachiales \rightarrow tractus longitudinalis posterior \rightarrow *emotional and motivation centers*
- tr. spino-parabrachio-hypothalamicus → hypothalamus → limbic system
- tr. spino-parabrachio-amygdalaris → corpus amygdaloideum

Ascending and **descending** pain pathways

① tr. spinothalamicus

② tr. spinoparabrachioamygdalaris

③ tr. spino-parabrachio-hypothalamicus

Referred pain

- Head's zones
- pain in the trunk (back) or on other parts of the body surface, the origin of which is from more distant organs – heart, pancreas, stomach, etc.
- convergence of viscerosensory afferents from internal organs and somatosensory afferents on common spinal interneurons

Reffered pain creation Head's zone

Classical gate control theory today considered obsoletee

Gate control theory

Algorithm of pain treatment

- physical therapy, rehabilitation, acupuncture
- pharmacotherapy non opioid analgetics
 - ASA, NSA
- pharmacotherapy opioid analgetics
 - codeine, morphine, fentanyl
- <u>psychotherapy</u>
- invasive methods
 - spinal neuromodulation
 - DREZ (dorsal root entry zone)
 - cortical stimulation

Invasive treatment of pain

Invasive treatment of pain – DREZ

Fig. 58.1 Nashold's diagram of location of his lesions in dorsal root entry zone. (From Nashold & Ostdahl 1979)

Basic types of pain

Acute (fast) pain

- is triggered by identifiable stimuli
- is short-termed
- it ceases when the tissue injury that caused it has healed
- usually does not repeat

Chronic (slow) pain

- lasts longer than 6 months
- the causes may not always be identifiable
- the intensity of the pain is always higher than the intensity of the stimulation
- causes great physical and mental suffering
- worsens the quality of life

Neuropathic pain

- it does not start at nociceptors but at primary afferent fibers
- hypersensitivity of C and A δ fibers
- remodeling of neural responses arrangement
- canalopathy (sodium, calcium and potassium channels)

Neurotransmitters of pain

- excitatory aminoacids glutamate (Glu)
 receptors: kainate, AMPA, NMDA
- substance P (NK1 receptor, ↓ K+ conductivity)
- **CGRP** (calcitonin gene-related peptide)
 - glutamate causes rapid and short-term depolarization
 - peptides cause long-term discharges

Primary hyperalgesia*

- occurs at the site of injury
- peripheral sensitization lowering the threshold of nociceptors
 - activation of TTX-R sodium channels
 - increased TTX-R expression (e.g. by NGF)
 - redistribution of TTX-R from the perikarya to the periphery
 - redistribuce TTX-R z těla neuronů na periférii

Secondary hyperalgesia*

- occurs in undamaged tissue around the injury
 - e.g. repeated stimulation of C fibers or intradermal application of capsaicin
 - increased sensitization of spinal neurons, their permanent depolarization
 - wind-up phenomenon
 - activation of NMDA receptors
 - enlargement of receptive fields

Pain inhibition*

Met-enkephalin (Tyr-Gly-Gly-Phe-Met)

Leu-enkephalin (Tyr-Gly-Gly-Phe-Leu)

Opioid system*

- nigrostriatal (A9) + mesolimbic (A10) dopaminergic
 - influences motor skills and the reward system
- hypothalamo-hypophysial
 modulates hormonal secretion
- ascendening and descending tracts
 - pain modulation
 - ascending medulla spinalis, thalamus
 - descending PAG, ncll. raphes

Endogenous opioids*

- β -endorfin (31 aminacids) μ , δ , κ
- endomorfin (4 aminacids) μ
- Leu-enkefalin (5 aminacids) δ
- Met-enkefalin (5 am aminacids inokyselin) δ
- dynorfin (A 1-8, B 1-17) κ
- nociceptin/orfanin

Endogenous opioids*

- presynaptic receptors
 - inhibition of neurotransmiters release
 - ↓ Ca²+
- postsynaptic receptors

Endogenous canabinoids*

- amids and esters of fatty acids
- anandamid
- palamitoyletanolamid (PEA)
- receptors: CB1, CB2
 - CB1 in PAG and RVM, sensory neuron
 - CB2 in structure of immune system
- FAAH hydrolase of fatty acids amids

